

University of Newcastle Faculty of Engineering and Built Environment Priority Research Centre for Geotechnical Science & Engineering

Hydro-mechanical modelling of multiphase flow in naturally fractured coalbeds applied to CBM recovery or *CO*₂ storage

Thesis submitted for the degree of *Philosophiae Doctor* in Applied Sciences

Presented by

François BERTRAND

Submitted on September 27, 2019 Defended on February 28, 2020

Generated on March 2, 2020

This research was funded by the "FRIA-F.R.S.-FNRS"

Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture

> Rue d'Egmont, 5 1000 Bruxelles

And the "Wallonie-Bruxelles International" Agency

Wallonie - Bruxelles International.be

Wallonie-Bruxelles International

Place Sainctelette, 2 1080 Bruxelles

Jury:

Prof. Frédéric COLLIN	(Supervisor)	University of Liège (Belgium)
Prof. Olivier BUZZI	(Co-supervisor)	University of Newcastle (Australia)
Prof. Robert CHARLIER		University of Liège (Belgium)
Prof. Cedric GOMMES		University of Liège (Belgium)
Prof. Anne-Catherine DIEU	DONNÉ	Delft University of Technology (The Netherlands)
Prof. Pierre BÉSUELLE		University of Grenoble (France)
Prof. Thierry MASSART		Free University of Brussels (Belgium)
Prof. Jean-Michel PEREIRA		Ecole des Ponts - ParisTech (France)

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. I confirm that the thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution, with the exception of the approved partner university associated with this Dual Award Doctoral Degree. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University of Newcastle Digital Repository and its equivalent at the partner university, subject to the provisions of the Copyright Act 1968 and any approved embargo.

F. Bertrand

ACKNOWLEDGMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written declaration endorsed in writing by my supervisor, attesting to my contribution to the joint publications.

By signing below I confirm that François Bertrand contributed to write the papers entitled *A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery* (published), *Cleat-scale modelling of the coal permeability evolution due to sorption-induced strain* (under review for publication on March 2, 2020) and *Application of the FE2 method to the hydro-mechanical modelling of multiphase flow in fractured coalbed* (in preparation on March 2, 2020), for which he developed and implemented some constitutive models.

F. Collin

Remerciements

Cette thèse est le fruit d'un travail personnel mais c'est aussi, et surtout, des rencontres. Je tiens à remercier toutes les personnes qui ont enrichi ma réfélexion, par de longues discussions ou parfois au détour d'un couloir.

Mes premiers remerciements vont bien sûrs à mes deux promoteurs, Frédéric et Olivier.

A Frédéric, merci de m'avoir donné l'opportunité de travailler sur un sujet aux multiples facettes. J'en retiens des intérêts économiques, des enjeux de société et bien sûr des défis scientifiques. Merci de m'avoir confié un sujet de thèse pionnier pour notre équipe. J'y ai vu l'opportunité d'explorer librement différents aspects : de la mécanique, de l'hydraulique, des couplages multi-physiques, des mathématiques, du multi-échelle, de la modélisation, de l'expérimental,... Bref, je ne me suis pas ennuyé. Par-dessus tout, merci pour son soutien de tous les instants tout au long de ces années.

A Olivier, merci de m'avoir fait découvrir les joies et les peines du laboratoire. Cela a permis d'apporter une nouvelle dimension à cette thèse. Merci qui plus est de m'avoir fait découvrir un pays si extraordinaire Down Under. Que de paysages magnifiques visités au cours de mon séjour à Newcastle. Merci pour l'acceuil.

Il y a eu Liège, Newcastle... et Grenoble. Merci à Jacques et Pierre de m'avoir acceuilli à Grenoble quelques samaines dès le début de ma thèse pour aborder les questions multi-échelles. Il m'aura finalement fallu du temps pour revenir sur cet aspect qui clotûre ma thèse.

Sur cette route, il y a eu quelques étapes importantes, notamment les réunions du comité de thèse. Merci à Robert, Cédric et Frédéric de m'avoir accompagné un bout de chemin et de m'avoir orienté dans mes recherches lors de nos réunions.

Le travail de chercheur implique aussi de partager ses connaissances. Il y a bien sûr eu les conférences mais je retiens aussi les activités d'enseignement. Elles ont parfois été source de désillusions mais aussi, de temps en temps, d'émerveillement et de satisfaction d'avoir pu transmettre. Merci à Robert et Simon pour nos échanges pédagogiques au cours de ces années.

Le doctorat, c'est un peu combiner études et travail, avoir un bureau et des collègues avec qui j'ai pu lier des liens d'amitié. Merci à Julien avec qui j'ai partagé mes journées, formuler un problème avec lui était déjà le début d'une solution. Merci à Anne-Catherine pour sa légendaire bonne humeur, j'entends encore parfois son rire dans le couloir. Je me demande si j'y serais sans elle. Merci à Benjamin pour son soutien dans mes premières épreuves de débuggage et son aide en général. Merci à tous ceux que j'ai croisés par ici, Simon, Benoît, Georgia, Elnaz, Sanae, Gilles, Albert, Kien et Liliana, ou par là-bas, Marina, Giusy, Andrea, Federico, Louis-Marin, Davide, Rita, Mattia et Yang. Cette thèse était une aventure humaine formidable grâce à vous. J'en garde des vidéos plein la tête.

Un merci particulier à mes soutiens financiers. Merci au FNRS de m'avoir procuré une liberté de chercher, ce n'est réellement pas qu'un slogan. Merci au WBI de m'avoir inspiré au bout du monde.

Enfin, tout simplement merci à ma famille, à ma sœur et à mes parents, pour leur soutien indéfectible. Nous traversons les épreuves ensemble.

Abstract

This thesis is dedicated to the modelling of multiphase flows in naturally fractured rocks and, in particular, to the recovery of methane, or reversely to the storage of carbon dioxide, in coalbeds. In this context, some hydro-mechanical couplings can likely affect the permeability of the reservoir. On the one hand, the increase in effective stress after the reservoir depletion tends to decrease the permeability. On the other hand, the matrix shrinkage following gas desorption tends to increase the permeability. These phenomena are highlighted with some experimental tests carried out in laboratory. Some numerical models are developed in this thesis to properly take into account the permeability evolution during the gas production/storage. As coal is rarely dry *in situ*, constitutive models are developed for unsaturated conditions. These models are implemented in the finite element code Lagamine.

The first model is developed at the macroscale, as generally followed in the literature for reservoir modelling. Then, fractures and matrix blocks are directly modelled with a microscale model. Particular attention is paid to the applicability of unsaturated formalism to a single fracture (modelled with an interface finite element). The numerical permeability model at the fracture scale is also compared to the analytical solution of a simple geometry. Finally, in order to model a reservoir, the modelling of the representative elementary volume is integrated in a multiscale approach with the finite element square method.

The first part of the thesis presents the context of the research. After a literature review of some remarkable experimental results, an experimental study on a Australian coal is then presented in the second part. The macroscale (reservoir scale), the microscale (laboratory scale) and the multiscale (from the laboratory to the reservoir) models are then presented in distinct parts. Finally, the last part contains the general conclusions of the thesis.

Résumé

Cette thèse est consacrée à la modélisation des écoulements multiphasiques au sein de réservoirs naturellement fracturés, plus particulièrement à la production du méthane des couches de charbon ou au stockage de dioxide de carbone dans ces veines de charbon. Dans ce contexte, des couplages hydromécaniques peuvent affecter la perméabilité du réservoir. D'une part, l'augmentation des contraintes effectives après une baisse de pression du réservoir tend à diminuer la perméabilité. D'autre part, le retrait de la matrice de charbon suite à la désorption du gaz tend à augmenter la perméabilité. Ces phénomènes sont mis en évidence par des essais hydro-mécaniques réalisés en laboratoire. Des modèles numériques sont dévéloppés afin de tenir compte de l'évolution de la perméabilité au cours de la production ou du stockage de gaz. A noter que le charbon est rarement sec *in situ*, les modèles constitutifs sont donc écrits en non-saturé. Ces modèles sont ensuite implémentés dans le code élément fini Lagamine.

Le premier modèle est développé à l'échelle macroscopique, comme ce qui se fait régulièrement dans la littérature pour les modélisations de réservoirs. Ensuite, un modèle microéchelle est développé pour décrire directement le comportement des fractures et des blocs matrice. Une attention particulière est portée à l'applicabilité du formalisme non-saturé à l'échelle d'une fracture unique (modélisée par un élément fini interface). Le modèle numérique de perméabilité à l'échelle de la fracture est aussi comparé à la solution analytique d'une géométrie simple. Finalement, ce modèle à l'échelle élémentaire est intégré dans une approche multi-échelle grâce à la méthode des éléments finis au carré en vue d'une modélisation à l'échelle d'un réservoir.

La première partie de la thèse présente le contexte des recherches. Ensuite, après une revue bibliographique de quelques résultats expérimentaux remarquables, la deuxième partie présente une étude expérimentale menée sur un charbon australien. Les modèles macro-échelle (échelle du réservoir), microéchelle (échelle du laboratoire) et multi-échelle (du laboratoire au réservoir) sont ensuite présentés dans des parties distinctes. Enfin, la dernière partie contient les conclusions générales de la thèse.

Preface

The work presented in this thesis has been published or is under consideration for publication in different scientific journals. You will find below a list of these publications or expected ones. In order to improve the readability, these papers have been extended, merged and linked to constitute the thesis. Some introduction and conclusions parts are also added.

Macroscale [Bertrand et al., 2017]:

Bertrand, F., Cerfontaine, B., and Collin, F. A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery. *Journal of Natural Gas Science and Engineering*. (2017).

Microscale [Bertrand et al., 2019]

Bertrand, F., Buzzi, O., and Collin, F. Cleat-scale modelling of the coal permeability evolution due to sorption-induced strain. *Journal of Coal Geology*. (2019).

Multiscale [Bertrand et al., 2020] :

Bertrand, F., Buzzi, O., Bésuelle, P., and Collin, F. Hydromechanical modelling of multiphase flow in naturally fractured coalbed using a multi-scale approach. *Journal of Natural Gas Science and Engineering*. (2020).

Moreover, the results of the research were also presented in the form of posters or presentations at different national and international conferences or seminars. In chronological order:

Macroscale simple-porosity model:

Efficiency of shaft sealing for CO_2 sequestration in coal mines. Workshop EAGE "Geomechanics and Energy". Celle (Germany). 12 to 15 October 2015.

Macroscale dual-porosity model, hydraulic part: Geomechanical aspects of coalbed methane (CBM) production : Flow model formulation. RUGC 2016. Liège (Belgium). 24 to 27 May 2016.

Macroscale dual-porosity model:

Hydro-mechanical modelling of coalbed methane flows: A hypothetical reservoir example. Contact FNRS Day on "Geomechanics and Couplings". Gembloux (Belgium). 9 February 2017. Macroscale dual-porosity model:

Simulation of coalbed methane flows, hydro-mechanical modelling in a particular fractured reservoir. 79th EAGE conference. Paris (France). 12 to 15 June 2017.

Macroscale dual-porosity model:

Hydro-mechanical modelling of a coalbed methane production well via a dual-porosity approach. GeoProc 2017. Paris (France). 5 to 7 July 2017.

Microscale direct model:

Modelling of the permeability alteration of coal due to sorption. Lagashop 2018. Delft (The Netherlands). 31 January to 2 February 2018.

Macroscale and microscale models comparison:

Modelling of the permeability evolution of coal due to sorption: Review of different scales analysis. PhD UoN Seminar. Newcastle (Australia). 23 July 2018.

Experimental results and microscale model:

Laboratory-scale study on the swelling behaviour of coal due to CO2 injection. 5th CO2 Geological Storage Workshop. Utrecht (The Netherlands). 21 to 23 November 2018.

Multiscale model:

Hydro-mechanical modelling of multiphase flow in coalbed by computational homogenization. 16th International Conference of IACMAG. Turin (Italy). 1 to 4 July 2020.

Contents

I	In	troduo	ction		1					
1	Con	Context of the research								
	1.1	Introdu	action		3					
	1.2	Coal a	nd coalbed methane formation		4					
		1.2.1	Coal formation		4					
		1.2.2	Coal classifications		4					
		1.2.3	Gases formation		6					
	1.3	Coal st	tructure		6					
	1.4	Coalbe	ed methane production		6					
		1.4.1	Unconventional reservoir		6					
		1.4.2	Reservoir depletion		7					
		1.4.3	Enhanced recovery		10					
		1.4.4	Production statistics		11					
	1.5	Carbor	n dioxide storage		15					
2	Out	line of t	he thesis		17					
	2.1	Issues			17					
	2.2	Object	ives		17					
	2.3	Outline	e		18					

Π	I Experimental observations	21
In	ntroduction Part II	23
3	Literature review	25
	3.1 Material structure	

	3.2	Mechai	nical properties	27
		3.2.1	Peak strength	28
		3.2.2	Elastic deformation behaviour	30
	3.3	Sorptio	n properties	31
	3.4	Swellin	g behaviour	34
	3.5	Permea	bility	36
4	Exp	erimenta	al study	41
	4.1	Experin	nental methods	41
		4.1.1	Sample collection	41
		4.1.2	Sample preparation and characterization	42
		4.1.3	Experimental procedures	45
	4.2	Experin	nental results	49
		4.2.1	Mechanical properties	49
		4.2.2	Sorption isotherm	52
		4.2.3	Swelling strain	53
		4.2.4	Permeability results	54
Co	onclus	sions Pa	rt II	59

Conclusions Part II

III Macroscale

In	trodu	ction Pa	art III	63
5	Gen	eral fra	mework for geomaterials	65
	5.1	Porous	medium representation	. 65
	5.2	Contin	uum mechanics	. 66
	5.3	Refere	ntial definition	. 67
	5.4	Balanc	e equations	. 68
		5.4.1	Mass balance equations	. 68
		5.4.2	Momentum balance equation	. 70
6	Hyd	ro-mec	hanical model	71
	6.1	Mecha	nnical part	. 71
		6.1.1	Matrix	. 72
		6.1.2	Fractures	. 72

61

		6.1.3 Equivalent continuum	3			
	6.2	Hydraulic part	5			
		6.2.1 Constitutive equations	5			
		6.2.2 Equilibrium equations	4			
		6.2.3 Dual-porosity approach	5			
	6.3	Hydro-mechanical couplings)			
		6.3.1 Hydraulic - mechanical coupling)			
		6.3.2 Mechanical - hydraulic coupling	1			
7	Fini	ite element formulation 92	3			
	71	Initial and boundary conditions 9	3			
	7.1	Weak form of the balance equations	ý 1			
	7.2		т 1			
	1.3		ł			
		7.3.1 Time	1			
		7.3.2 Space	5			
	7.4	Global solution of the problem	7			
	7.5	Implementation in the Lagamine code)			
8	Rese	ervoir modelling 10	1			
	8.1	Synthetic reference case	1			
	8.2	Parametric and couplings analysis	4			
	8.3	Horseshoe Canyon case	3			
Co	Conclusions Part III 111					

IV Microscale

113

115

Introduction Part IV

9	Hydro-mechanical model 1					
	9.1	Matrix		117		
		9.1.1	Mechanical problem	117		
		9.1.2	Hydraulic problem	118		
		9.1.3	Hydro-mechanical coupling	120		
	9.2	Cleats		120		
		9.2.1	Mechanical problem	121		

		9.2.2	Hydraulic problem	122
		9.2.3	Hydro-mechanical couplings	131
	9.3	Contin	uum formulation	132
		9.3.1	Mechanical problem	132
		9.3.2	Hydraulic problem	133
10	Finit	e eleme	ent formulation	135
	10.1	Space a	and pressure discretization	135
	10.2	Energe	tically equivalent nodal forces	135
		10.2.1	External forces	135
		10.2.2	Internal forces	136
		10.2.3	Out of balance forces	136
	10.3	Stiffnes	ss matrix	137
	10.4	Implen	nentation in the Lagamine code	137
11	Anal	ytical v	erification	139
11	Anal 11.1	ytical v Expone	erification	139 139
11	Anal 11.1 11.2	ytical v Expone Analyti	erification ential model	139139140
11	Anal 11.1 11.2	ytical v Expone Analyti 11.2.1	erification ential model	139139140141
11	Anal 11.1 11.2	ytical v Expone Analyti 11.2.1 11.2.2	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness	 139 139 140 141 143
11	Anal 11.1 11.2 11.3	ytical v Expone Analyti 11.2.1 11.2.2 Analys	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness is and validation	 139 139 140 141 143 143
11	Anal 11.1 11.2 11.3	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness is and validation Internal swelling stress	 139 139 140 141 143 143 143
11	Anal 11.1 11.2 11.3	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1 11.3.2	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness is and validation Internal swelling stress Permeability evolution	 139 139 140 141 143 143 143 144
11	Anal 11.1 11.2 11.3	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1 11.3.2 11.3.3	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness is and validation Internal swelling stress Permeability evolution Transient behaviour	 139 139 140 141 143 143 143 144 146
11 12	Anal 11.1 11.2 11.3 REV	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1 11.3.2 11.3.3 modell	erification ential model ical solution Constant fracture stiffness Hyperbolic fracture stiffness is and validation Internal swelling stress Permeability evolution Transient behaviour	 139 139 140 141 143 143 143 144 146 149
11 12	Anal 11.1 11.2 11.3 REV 12.1	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1 11.3.2 11.3.3 modell Mechan	erification ential model	 139 139 140 141 143 143 143 144 146 149 149
11	Anal 11.1 11.2 11.3 REV 12.1 12.2	ytical v Expone Analyti 11.2.1 11.2.2 Analys 11.3.1 11.3.2 11.3.3 modell Mechan Hydro-	erification ential model	 139 139 140 141 143 143 143 144 146 149 151

V	Multiscale	157
Inti	roduction Part V	159
13	The Finite Element Square Method	161
	13.1 A multiscale modelling approach	

	13.2	Macro-to-micro scale transition (Localization)	162
		13.2.1 Deformation averaging	163
		13.2.2 Separation of scales	163
	13.3	Microscale boundary value problem	163
		13.3.1 Choice of the REV	163
		13.3.2 Boundary conditions	164
		13.3.3 Balance equation	166
		13.3.4 Constitutive behaviour	166
		13.3.5 Weak form of the balance equation	166
		13.3.6 Solution of the problem	166
	13.4	Micro-to-macro scale transition (Homogenization)	167
		13.4.1 Stress averaging	167
		13.4.2 Macro-homogeneity condition	167
	13.5	Macroscale boundary value problem	168
		13.5.1 Consistent stiffness matrix by numerical perturbation	168
		13.5.2 Consistent stiffness matrix by static condensation	168
	13.6	Algorithm of the FE^2 method	169
14	Hvdi	ro-mechanical model	171
	14.1	Background and proposed developments	171
	14.2	REV and unit cell	171
	14.3	Decomposition of the microkinematics	173
	14.4	Periodic boundary conditions	173
	14.5	Separation of scales	174
	14.6	Balance equations	174
	14.7	Constitutive laws	175
		14.7.1 Matrix	175
		14.7.2 Cleats	177
	14.8	Numerical solution	179
		14.8.1 Mechanical part	179
		14.8.2 Hydraulic part	183
	14.9	Homogenized macroscale response	184
		14.9.1 Stresses	185
		14.9.2 Fluid fluxes	186
		14.9.3 Fluid masses	186
		14.9.4 Macroscale stiffness matrix	187
	14.10)Numerical implementation	187

15	Reservoir modelling					
	15.1 H	Referer	nce case	189		
	15.2 \$	Sensitiv	vity analysis	196		
	1	15.2.1	Cleats aperture	196		
	1	15.2.2	Cleats stiffness	198		
	1	15.2.3	Cleats density	199		
	1	15.2.4	Tortuosity effect	200		
	1	15.2.5	Hydro-mechanical couplings	201		
	1	15.2.6	Langmuir's parameters	203		
	1	15.2.7	Sorption time	204		
	1	15.2.8	Retention curve	204		
	15.3 H	Horses	noe Canyon case	206		
Со	nclusio	ons Par	rt V	209		

VI Conclusions

211

16	General conclusions	213
	16.1 Summary	. 213
	16.2 Original contributions	. 215
	16.3 Outlooks	. 216
Bi	bliography	236
Ap	opendices	237
	A. Stiffness matrix by Static condensation	. 239

List of Symbols

Acronyms

AMM	Abandoned mine methane
ASTM	American Society for Testing and Materials
CBM	Coalbed methane
CCS	Carbon dioxide Capture and Storage
CMM	Coal mine methane
CSG	Coal seam gas
UCG	Underground coal gasification

Greek Symbols

1 _w	Water compressibility	$M^{-1}LT^2$
	Species	
	Linear sorption-induced strain coefficient	
	Volumetric sorption-induced strain coefficient	ML^{-3}
	Bishop's stress parameter	
	Discrete variation of a quantity	
	Infinitesimal variation of a quantity	
ij	Kronecker symbol	
t	Time step	Т
t	Sub time step	Т
	Second coordinate for the parent finite element	
	External surface of the domain	ML ^{1}T 2
	Swelling pore strain parameter	
0	External reference surface of the REV	L^2
с	Contact boundary between matrix blocks	L^2
\overline{q}	Boundaries with imposed flux \overline{q}	L^2
ilde q	Boundaries with imposed flux \tilde{q}	L^2
	Geometric transmissivity function along the channel	L^3

n	Knudsen number	
ob	Penalty coefficient for the outer boundary flow	$L^{-1}T^{-1}$
	Tortuosity	
	Cleat size distribution index	
т	First Lamé parameter of the matrix	ML ^{1}T 2
μ	Dynamic viscosity	ML ^{1}T 1
μ_f	Friction coefficient	
μ_g	Gas viscosity	ML ^{1}T 1
μ_r	Viscosity ratio	ML ^{1}T 1
μ_w	Water viscosity	ML ^{1}T 1
	Poisson's ratio	
т	Poisson's ratio of the matrix	
ij	Poisson's ratios of the equivalent medium	
	Volume of the control space	L^3
0	Reference volume of the REV	L^3
е	Volume of a finite element <i>e</i>	L^3
f	Volume of the fractures	L^3
g	Gas volume	L^3
g	Void volume	L^3
g	Gas mass flux in the channel	MT^{-1}
v	Void volume	L^3
w	Water mass flux	MT^{-1}
	Porosity	
l	Geometric transmissivity of the channel	L^2
0	Initial porosity $(t = 0)$	
f	Porosity from fractures	
	Phase	
	Shape factor	L^{-2}
	Density	ML^{-3}
С	Coal density	ML^{-3}
g	Gas density	ML^{-3}
S	Solid density	ML^{-3}
v	Water vapour density	ML^{-3}
$\begin{array}{c} 0 \\ v \end{array}$	Density of saturated water vapour	ML^{-3}
w	Water density	ML^{-3}
g f	Gas density in the cleats	ML^{-3}

$ ho_{g,f}$	Gas density in the fracture	$[ML^{-3}]$
${\sf p}^d_{g,f}$	Density of dissolved gas in water	$[ML^{-3}]$
$\rho_{g,std}$	Gas density at standard conditions	$[ML^{-3}]$
$ ho_{g_0}$	Reference gas density	$[ML^{-3}]$
${f ho}_g^{Ad}$	Density of gas adsorbed on the matrix	$[ML^{-3}]$
$ ho_{w_0}$	Reference water density	$[ML^{-3}]$
σ_{ij_0}	Initial stresses	$[ML^{-1}T^{-2}]$
σ_{ij}	Cauchy stress tensor	$[ML^{-1}T^{-2}]$
σ'_{ij}	Effective stress tensor	$[ML^{-1}T^{-2}]$
τ	Shear stress	$[ML^{-1}T^{-2}]$
$\tau_{c,w}$	Channel tortuosity of the water phase	[—]
τ_{cgw}	Channel tortuosity of the gas phase	[—]
Θ	Number of sites covered by adsorbed molecules	
θ	Angle	[—]
$\tilde{\mathbf{\sigma}_{ij}}$	Jaumann stress rate	$[ML^{-1}T^{-3}]$
ε	Small perturbation	
ϵ_b	Bulk strain	[—]
ϵ_p	Pore strain	[—]
$\mathbf{\epsilon}_{b_s}$	Bulk sorption-induced strain	[—]
ϵ_{ij}	Strain tensor	[—]
$\mathbf{\epsilon}_{p_s}$	Pore sorption-induced strain	[—]
Ξ	Volume fraction	[—]
ξ	First coordinate for the parent finite element	
Ξ_g	Gas volume fraction	[—]
Ξ_l	Liquid volume fraction	[—]
Ξ_s	Solid volume fraction	[-]
ζ	Tortuosity parameter	[-]
ϵ_{vs}	Volumetric sorption-induced strain	[-]
$\mathbf{e}_{(ii)_s}$	Linear sorption-induced strain in the direction <i>i</i>	[-]

Roman Symbols

[A]	Matrix of partial derivatives of coordinates for a parent continuum element
$[A^I]$	Matrix of partial derivatives of coordinates for an inter- face element
[<i>B</i>]	Matrix of partial derivatives of shape functions for a par- ent continuum element

$[B^I]$	Matrix of partial derivatives of shape functions for an in- terface element	
$[C_{mm}]$	Mechanical constitutive matrix	$[ML^{-1}T^{-2}]$
$[K_{mm}]$	Mechanical stiffness matrix	$[ML^{-1}T^{-2}]$
$\Delta \mathcal{H}$	Differential enthalpy of adsorption	$[ML^2T^{-2}N^{-1}]$
$\Delta \mathcal{S}^0$	Standard molar integral entropy at saturation	$[ML^2T^{-2}N^{-1}\theta^{-1}]$
Я	Adsorbed gas content parameter	[—]
\mathcal{C}_{g}	Integration constant	$[T^{-1}]$
\mathcal{C}_{w}	Integration constant	$[T^{-1}]$
K	Some internal variables	
\mathcal{M}_{g}	Gas molecules	
$\mathcal N$	Interpolation function	
0-	Vacant surface sites	
\mathcal{P}	Point with coordinates x_i	
\mathcal{T}	Sorption time	[T]
\mathcal{Z}	Integration constant	$[LT^{-1}]$
Z_g	Integration constant	$[LT^{-1}]$
N	Power-law function describing a fractal distribution	
ī	Gas mean free path	[L]
\overline{q}	Boundary flow	$[LT^{-1}]$
\overline{q}_{g}	Gas boundary flow	$[LT^{-1}]$
\overline{q}_w	Water boundary flow	$[LT^{-1}]$
\overline{t}_i	External traction force	$[ML^{-1}T^{-2}]$
$\{f\}$	Global nodal force components	
<i>{u}</i>	Global nodal displacement components	
$\{U^{Node}\}$	Column vectors of nodal displacements	[L]
$\{V^{Node}\}$	Column vectors of nodal velocities	$[LT^{-1}]$
$\{X^{Node}\}$	Column vectors of nodal positions	[L]
A	Area or Boundary surface area	$[L^2]$
a	Constant of proportionality	[—]
a'	Constant of proportionality	[—]
$a^{\prime\prime}$	Constant of proportionality	[—]
b	Biot's coefficient	[—]
b_g	Klinkenberg number	[—]
b_{ij}	Biot's coefficient tensor	[—]
С	Concentration	$[NL^{-3}]$

С	Kundt and Warburg's constant	[—]
C_g	Gas concentration	$[NL^{-3}]$
C_{ijkl}	Constitutive mechanical (stiffness) tensor	$[ML^{-1}T^{-2}]$
D_f	Fractal dimension	[—]
d_g	Collision diameter of a gas molecule	[L]
d_p	Pore diameter	[L]
D^{lpha}_{eta}	Diffusion coefficient of the species α through β	$[L^2 T^{-1}]$
$D^{lpha extstyle }_{eta}$	Effective diffusion coefficient of the species α through β	$[L^2 T^{-1}]$
D_{ijkl}	Compliance tensor	$[M^{-1}LT^2]$
E	Mass exchange between matrix blocks and fractures	$[MT^{-1}]$
E_i	Young's moduli of the equivalent medium	$[ML^{-1}T^{-2}]$
E_m	Young's modulus of the matrix	$[ML^{-1}T^{-2}]$
F_i	Force vector	$[ML^{-2}T^{-2}]$
f_i	Flux	$[ML^{-2}T^{-1}]$
F_E	Energetically equivalent external nodal forces	
f_{g_i}	Internal total flux of gas	$[ML^{-2}T^{-1}]$
f_{g_L}	Longitudinal gas mass flux	$[ML^{-2}T^{-1}]$
$f_{g_T}^k$	Transverse gas mass flux	$[ML^{-2}T^{-1}]$
F_{ij}	Deformation gradient tensor	[—]
F_I	Energetically equivalent internal nodal forces	
FOB	Out of balance forces	
f_{w_i}	Internal total flux of water	$[ML^{-2}T^{-1}]$
f_{w_L}	Longitudinal water mass flux	$[ML^{-2}T^{-1}]$
G_m	Shear modulus of the matrix blocks	$[ML^{-1}T^{-2}]$
G_{ij}	Shear moduli of the equivalent medium	$[ML^{-1}T^{-2}]$
Н	Height	[L]
h	Fracture aperture	[L]
h^{min}	Minimum fracture aperture	[L]
h_b	Hydraulic fracture aperture	[L]
H_g	Henry's coefficient	[—]
h_g	Height of the gas stratum in the fracture	[L]
h_w	Height of the water stratum in the fracture	[L]
$J^g_{g_i}$	Diffusive mass flux of gas in the gas phase	$[ML^{-2}T^{-1}]$
$J^w_{g_i}$	Diffusive mass flux of water vapour	$[ML^{-2}T^{-1}]$
J_{ij}	Jacobian matrix	[—]

$J_{l_i}^g$	Diffusive mass flux of dissolved gas in the liquid phase	ML ^{2}T 1
$J^g_{m_i}$	Diffusive mass flux of gas in the matrix	$ML^{-2}T^{-1}$
Κ	Global stiffness matrix	
k	Permeability	L^2
k_0	Initial permeability $(t = 0)$	L^2
k _B	Boltzmann constant	ML^2T ² ¹
K _c	Equilibrium constant of a reaction	
<i>k</i> _e	Effective intrinsic permeability	L^2
K_m	Bulk modulus of the matrix blocks	ML ^{1}T 2
K _n	Normal stiffness of the fracture	ML ^{2}T 2
K_n^0	Normal stiffness of the fracture for zero-displacement	ML ^{2}T 2
K_p	Cleat stiffness	ML ^{1}T 2
K_s	Shear stiffness of the fracture	ML ^{2}T 2
k _{cleat}	Cleat permeability	L^2
<i>k</i> _{rg}	Relative permeability to gas	
k _{rw}	Relative permeability to water	
L	Fracture length	L
l	Width of the contact zone	L
L_c	Macroscopic characteristic length	L
l_c	Microscopic characteristic length	L
l_u	Length of a capillary tube	L
L_{ij}	Velocity gradient field	T^{-1}
l_{REV}	Size of the REV	L
М	Mass	M
т	Material	L
M_g	Gas mass content	M
M_m	P-wave modulus of the matrix	$ML^{-1}T^{-2}$
M_w	Water mass content	M
M^d_{gf}	Gas mass dissolved in the water in the fracture	M
M_{gf}^{g}	Gas mass in the gas phase in the fracture	M
$M_{g\ m}^{Ad}$	Gas mass adsorbed in the matrix	M
M_{m_g}	Gas molecular mass	MN^{-1}
M_{m_w}	Water molecular mass	MN^{-1}
Ν	Number of sets of fractures	
N _i	Unit vector normal to the surface of the REV	

n_i	Unit vector normal to the boundary	
<i>n_{rg}</i>	Exponent parameter for the stauration degree formulation	
n_{rw}	Exponent parameter for the stauration degree formulation	
р	Pressure	$ML^{-1}T^{-2}$
p_0	Initial pressure $(t = 0)$	ML ^{1}T 2
p_a	Atmospheric pressure	ML ^{1}T 2
p_c	Capillary pressure	$ML^{-1}T^{-2}$
p_e	Entry capillary pressure	$ML^{-1}T^{-2}$
p_f	Fracture pressure	ML ^{1}T 2
p_g	Gas pressure	ML ^{1}T 2
p_g	Virtual gas pressure	ML ^{1}T 2
p_g^f	Fluctuation of gas pressure	ML ^{1}T 2
P_L	Langmuir pressure	ML ^{1}T 2
p_m	Matrix pressure	ML ^{1}T 2
p_w	Water pressure	ML ^{1}T 2
p_w	Virtual water pressure	ML ^{1}T 2
p_w^f	Fluctuation of water pressure	ML ^{1}T 2
p_{gf}	Gas pressure in the fractures	ML ^{1}T 2
p _{g m}	Gas pressure in the matrix	ML ^{1}T 2
$p_{g m}^0$	Initial gas pressure in the matrix	ML ^{1}T 2
$p_{g\ m}^{lim}$	Limit gas pressure	ML ^{1}T 2
$p_{g m}^{max}$	Maximum gas pressure in the matrix	$ML^{-1}T^{-2}$
$p_g^{Ad^{lim}}$	Limit adsorbed gas pressure	ML ^{1}T 2
p_g^{Ad}	Adsorbed gas pressure in the matrix	ML ^{1}T 2
$p_g^{Ad^b}$	Adsorbed gas pressure in equilibrium with the fracture pressure	ML ^{1}T 2
P_{ij}	First Piola-Kirchhoff stress tensor	ML ^{1}T 2
p_{rb}	Rebound pressure	ML ^{1}T 2
p _{res}	Reservoir pressure	$ML^{-1}T^{-2}$
p_{res}^{crit}	Critical reservoir pressure	$ML^{-1}T^{-2}$
p_{w_0}	Reference water pressure	$ML^{-1}T^{-2}$
Q	Source term	$ML^{-3}T^{-1}$
q	Flow	LT^{-1}
q_f	Flow between two parallel plates	LT^{-1}
Q_g	Gas source term	$ML^{-3}T^{-1}$

q_g	Input gas flux	$[ML^{-2}T^{-1}]$
q_i	Flow vector	$[LT^{-1}]$
q_L	Longitudinal flow	$[LT^{-1}]$
q_N	Total flow through N fractures	$[LT^{-1}]$
q_T	Transverse flow	$[LT^{-1}]$
Q_w	Water source term	$[ML^{-3}T^{-1}]$
q_w	Input water flux	$[ML^{-2}T^{-1}]$
q_{g_i}	Advective flow vector of the gas phase	$[LT^{-1}]$
q_{g_L}	Longitudinal flow of the gas phase	$[LT^1]$
q_{g_T}	Gas transverse flow	$[LT^{-1}]$
$q_{g_{well}}$	Mass gas production rate	$[ML^{-2}T^{-1}]$
q_{l_i}	Advective flow vector of the liquid phase	$[LT^{-1}]$
q_{l_L}	Longitudinal flow of the liquid phase	$[LT^1]$
$q_{w_{ob}}$	Income water mass flow on the outer boundary	$[ML^{-2}T^{-1}]$
$q_{w_{well}}$	Mass water production rate	$[ML^{-2}T^{-1}]$
R	Universal gas constant	$[ML^2N^{-1}\theta^{-1}T^{-2}]$
r	Radius	[L]
R_{ij}	Rotation matrix	[—]
S	Coordinate along the channel	[L]
S_g	Gas mass storage term	$[ML^{-2}]$
S_r	Saturation degree	[—]
S_r^*	Normalized saturation	[—]
S_w	Water mass storage term	$[ML^{-2}]$
$S_{r,res}$	Residual saturation	[—]
$S_{r_g,res}$	Gas residual saturation degree	[—]
S_{r_g}	Gas saturation degree	[—]
Т	Temperature	[θ]
t	Time	[T]
T_i	Projection of the local stress tensor in global coordinates	$[ML^{-1}T^{-2}]$
t_i	Traction vector	$[ML^{-1}T^{-2}]$
T_t	Transverse transmissivity of the fracture	$[M^{-1}L^2T^1]$
T_{well}	Transmissibility factor of the well	$[L^3]$
u_i	Displacement vector	[L]
u_i^f	Fluctuation displacement field	[L]
u_i^{\wr}	Equivalent displacement in the contact zone	[L]

u_n	Normal displacement	[L]
u_n^{max}	Maximal normal displacement allowed	[L]
u_{l_k}	Coordinate of the degree of freedom l at node k	
V	Volume	$[L^3]$
Vi	Velocity vector	$[LT^{-1}]$
v_i^*	Admissible virtual velocity field	$[LT^{-1}]$
V_L	Langmuir volume	$[L^3 M^{-1}]$
Vg	Gas molecular velocity	$[LT^{-1}]$
V_g^{Ad}	Adsorbed volume per unit of mass	$[L^3 M^{-1}]$
W	Matrix width	[L]
W_E^*	External virtual work	$[ML^2T^{-2}]$
W_G	Gauss weight at the integration point IP	
W_I^*	Internal virtual work	$[ML^2T^{-2}]$
W _{ij}	Spin rate tensor	T^{-1}
X_i	Coordinates in the reference configuration	[L]
<i>x</i> _i	Coordinates in the current configuration	[L]

Superscripts

$[.]^e$	Quantity related to a finite element e
$[.]^F$	Quantity on the follow boundary
$[.]^L$	Quantity on the lead boundary
$[.]^M$	Macroscale quantity
$[.]^{m}$	Microscale quantity
$[.]^{T}$	Transposed object
[.]	Time derivative
°[.]	Quantity given in the orthotropic axes

List of Figures

I–1	Coalification process. <i>Modified from</i> [Ayoub et al., 1991]	4
I–2	Coal rank and gas generated. <i>Modified from</i> [Gao et al., 2014].	5
I–3	Schematic coalbed structure. From [Al-Jubori et al., 2009]	6
I–4	Conventional reservoir versus Coalbed methane reservoir.	6
I–5	Comparison of the quantity of gas stored in coal reservoir and conventional reservoir. <i>Modified from</i> [Jones et al., 1987]	7
I–6	Gas content-Pressure path followed during coal seam methane production. Modified from [Ayoub et al., 1991].	8
I–7	Gas migration in coal seam, [Al-Jubori et al., 2009]	8
I–8	Comparison of storage and production of gas in coalbed (left) and conventional (right) reservoirs. <i>Modified from</i> [Ayoub et al., 1991].	9
I–9	Three stages of coalbed methane production. <i>Modified from</i> [Koenig et al., 1989]	9
I–10	Illustration of the combination of carbon dioxide storage with methane recovery enhancement.	11
I–11	Major coal basins producing CBM in the USA. Modified after [Moore, 2012]	12
I–12	Estimated production in the USA. Data from the U.S. Energy Information Administration.	12
I–13	Coal Seam Gas production in Australia from 1996 to 2010. 1 Petajoule (PJ) 1 Billion cubic feet. <i>Data from Geoscience Australia</i> .	13
I–14	Coal basins producing CBM in Australia. Modified after [Moore, 2012]	13
I–15	Map of the outcropping or shallow subsurface coal basins (shaded area) in and around Belgium. <i>Modified from [Piessens and Dusar, 2004]</i>	14
I–16	One of the engines generating 1 5MW at the foot of the headframe from an abandoned coal mine in Anderlues (Belgium). Photo taken on 06/06/2019.	14
I–17	FE^2 approach.	18
II–1	3D visualisation of coal cleat structure obtained by tomography imaging (after filters). <i>From</i> [Jing et al., 2016].	26
II–2	Schematic cleat system. From [Laubach et al., 1998].	26
II–3	Axial stress - strain behaviour of 300mm diameter coal samples, Moura D Upper seam (Queensland, Australia). From [Medhurst and Brown, 1998].	28
II–4	Peak strengths of 61mm diameter samples plotted for each coal seam and each bright- ness category. <i>From</i> [Medhurst and Brown, 1998]	29
II–5	Mechanisms of coal failure. From [Medhurst and Brown, 1998]	29

II–6	Elastic modulus against confining stress for 61 <i>mm</i> diameter coal samples. <i>From</i> [Med-hurst and Brown, 1998]	30
II–7	Poisson's ratio against confining stress for 61mm diameter coal samples. From [Med-hurst and Brown, 1998]	30
II–8	Effect of sample size measurements of elastic modulus. <i>From</i> [Medhurst and Brown, 1998].	31
II–9	Effect of sample size measurements of Poisson's ratio. <i>From</i> [Medhurst and Brown, 1998].	31
II–10	Langmuir's isotherm fitting for methane sorption data published by [Coppens, 1967].	32
II-11	Sketches of the Langmuir and BET models	32
II-12	CO_2/CH_4 Sorption capacities versus Coal Rank. <i>Modified from</i> [Bustin, 2002]	34
II–13	Compilation of stabilized swelling CO_2 strain data from the literature ([Levine, 1996], [George and Barakat, 2001], [Ottiger et al., 2008] and [Day et al., 2008])	34
II–14	Volumetric strain with CH_4 content. From [Cui and Bustin, 2005]	35
II–15	Volumetric strain with CH ₄ pressure. From [Cui and Bustin, 2005]	35
II–16	Relationship between cleat aperture, number of cleats (per inch) and permeability. Developed for the San Juan and Black Warrior basins. <i>From</i> [Moore, 2012] <i>modified from</i> [Laubach et al., 1998]	36
II–17	Relationship between permeability and depth for some coals in the Upper Silesian Coal Basin, Poland. <i>From</i> [Moore, 2012] <i>modified from</i> [McCants et al., 2001]	37
II–18	In situ coal bed permeability versus depth in a Permian coal basin in Australia. <i>From</i> [Moore, 2012]	37
II–19	Plot showing the permeability changes of the Anderson 01 core as a function on net stress. <i>From</i> [Robertson et al., 2007].	38
II–20	Plot showing the permeability changes of the Gilson 02 core as a function on net stress. <i>From</i> [Robertson et al., 2007]	38
II–21	Permeability as a function of pore pressure for three gases using the Anderson 01 coal core. <i>From</i> [Robertson et al., 2007]	39
II–22	Permeability as a function of pore pressure for three gases using the Gilson 02 coal core. From [Robertson et al., 2007]	39
II–23	Overview of the experimental tests carried out	41
II–24	Tomography B5s2 (diameter 53 <i>mm</i>).	43
II–25	Tomography B5s3 (diameter 53 <i>mm</i>).	44
II–26	Vertical thin section of the specimen B5s3 (4mm wide)	45
II–27	Pressure steps applied during the swelling test.	46
II–28	Set up of the permeability test (not to scale).	47
II–29	Pressure decays measured in the tank for gas (air and CO_2) injection 3 5MPa and confinement 5MPa.	48
II–30	UCS test on specimen B5s1: stress-strain curve	50
II–31	Triaxial tests on specimen B5s2: stress-strain curve	50

II-32	Triaxial tests on specimen B5s2: Young modulus.	51
II–33	Triaxial tests on specimen B5s3: stress-strain curve	51
II-34	Triaxial tests on specimen B5s3: Young modulus.	51
II–35	Experimental sorption data fitted by the Langmuir's isotherm (Parameters from Table II–9)	52
II–36	CO ₂ volumetric swelling strain.	53
II–37	Stabilized swelling <i>CO</i> ₂ Strain compared to literature ([Levine, 1996], [George and Barakat, 2001], [Ottiger et al., 2008] and [Day et al., 2008])	53
II–38	Evolution of the stabilized swelling strain with the injection pressure	54
II–39	Permeability evolution with air and CO_2 pressures for specimen B5s2 (confinement 5MPa).	55
II–40	Permeability evolution with air and CO ₂ pressures for specimen B5s3 (confinement 5MPa).	55
II-41	Permeability evolution with air pressure for specimen B5s3 (different confinements)	56
II–42	Permeability evolution with CO_2 pressure for specimen B5s3 (different confinements).	56
II–43	CO_2 permeability evolution with the applied confinement	56
II–44	CO_2 permeability evolution with the pore pressure for a constant difference pressure	57
III–1	Dual-continuum approach for the hydraulic modelling	63
III–2	Porous medium and superimposed continua.	65
III–3	Cross section on a body with an internal force F acting on a surface A	66
III–4	Tetrahedral portion of material with a traction vector t_i acting on a surface characterized by a normal n_j	66
III–5	Updated Lagrangian formulation: $X_1^0; X_2^0$ is the initial basis relative to the initial con- figuration, $X_1; X_2$ is the updated reference basis relative to the reference configuration, and $x_1; x_2$ is the current basis relative to the deformed configuration. is the mapping that associates a material point of the reference configuration with its current position	
	x_i X_i	67
III–6	Balance on a control volume	68
III–7	Geometry model with three sets of cleats. After [Reiss, 1980]	71
III–8	Analogy with two springs in series. After [Liu et al., 2009].	72
III–9	Comparison between homogeneous and equivalent continua	74
III–10	Conceptual hydraulic model.	75
III–11	Two representations of flow in porous media: direct modelling (Navier Stokes) versus continuum modelling (e.g. Darcy).	76
III–12	Fluid flow through a cleat. <i>Modified from</i> [Reiss, 1980]	77
III–13	Bundle of capillary tubes model. After [Gates et al., 1950] and [Chen et al., 2013]	79
III–14	Capillary pressure in a cleat. <i>Modified from</i> [Chen et al., 2013]	79
III–15	Wettability of coal as observed by [Bailey and Gray, 1958] with a air and water.	80
III–16	Effect of tortuosity. <i>Modified from</i> [Chen et al., 2013]	82

III–17	Effect of tortuosity and cleat size distribution index on relative permeability curves 83
III–18	Phases, species and equilibrium restrictions
III–19	Mass exchange process between cleats and matrix
III–20	Influence of the geometry on the release process
III–21	Crank solution for diffusion (D coefficient) in a plane (width w) and its approximation. 87
III–22	Comparison of the matrix gas pressure evolutions for different T
III–23	Illustration of the interest to subdivide the time step in smaller intervals for the compu- tation of the adsorbed gas pressure
III–24	Two-dimensional finite isoparametric element
III–25	Illustration of the Newton-Raphson iterative scheme for a one-variable function 97
III–26	Reference case: water and gas production profiles
III–27	Reference case: gas production profile after peak in a semi-log plot
III–28	Reference case: cumulative gas
III–29	Gas production curves
III–30	Porosity evolution at 50 <i>cm</i> from the well
III–31	Radial permeability evolution at 50cm from the well
III–32	Water pressure evolution at 50 <i>cm</i> from the well
III–33	Radial permeability right next to the well
III–34	Influence of the desorption strain on the radial permeability at 50cm from the well 106
III–35	Influence of the desorption strain on the gas production curve
III–36	Influence of the depletion rate and gas content on the radial permeability at 50 <i>cm</i> from the well
III–37	Influence of the depletion rate and gas content on the gas production profile 108
III–38	Production history matching. Horseshoe Canyon data from [Gerami et al., 2007] 110
IV–1	Example of direct modelling: Adsorbed gas pressure in the matrix
IV–2	Conceptual hydraulic microscale model
IV–3	Different types of diffusion
IV–4	Schematic diagram of surface diffusion. <i>Modified from</i> [Wu et al., 2015]
IV–5	Definition of the geometry of the cleat with a flow along x_1 . Modified from [Reiss, 1980]. 121
IV–6	Constitutive law describing the normal behaviour of a rough rock joint. <i>Modified from</i> [Cerfontaine et al., 2015]
IV–7	Mohr-Coulomb criterion
IV–8	Cleats flow model
IV-9	Laminar fluid flow profile between two parallel plates
IV-10	Gas flow in between of water flows in a fracture space
IV-11	A fracture wall seen as a fractal object with a distribution of open capillary tubes 130
IV-12	Capillary flow through V-shaped groove. From [Terzaghi et al., 1996]

IV-13	Relation between the hydraulic and the mechanical aperture. <i>Modified from</i> [Marinelli et al., 2016].	132
IV-14	Definition of the mechanical problem.	133
IV-15	Definition of the flow problem.	133
IV-16	A 3D interface element defined by 12 nodes	135
IV-17	One vertical fracture delimited by two half blocks and boundary conditions considered.	141
IV-18	Evolution of the internal swelling stress in the matrix with the gas pressure	144
IV-19	Constant fracture stiffness: Numerical results versus analytical model	145
IV-20	Hyperbolic fracture stiffness: Numerical results versus analytical model	145
IV-21	Constant fracture stiffness and reservoir boundary conditions: Comparison with the model from Shi & Durucan (Equation IV–96 with $K_p = h_0 K_n$)	146
IV-22	Analytical homogenous evolution of the adsorbed gas pressure for a constant and a linear limit pressure.	147
IV-23	Analytical homogenous evolution of the adsorbed gas pressure for a linear and a hyper- bolic limit pressure.	147
IV-24	Comparison of the mean gas pressure evolution with the analytical homogenous evolu- tion with different sorption times.	148
IV-25	Adsorbed gas pressure in the matrix after 5 days	148
IV-26	Geometry of the sample for the mechanical test.	149
IV-27	Evolutions of remarkable variables during the mechanical test	150
IV-28	Stress-strain curve 10kPa confinement: Simulation versus experimental data	150
IV-29	Stress-strain curves: Simulations <i>versus</i> experimental data	151
IV-30	REV geometry and boundary conditions considered for the modelling	152
IV-31	Vertical and horizontal fracture aperture evolution with time (injection pressure: 3MPa).	152
IV-32	Equivalent vertical permeability evolution with time compared to the porosity model (injection pressure: 3MPa).	153
IV-33	Equivalent vertical permeability evolution with time for different diffusion coefficients (injection pressure: 3MPa).	153
IV-34	Permeability evolution with the pore pressure.	154
V-1	Multiscale approach.	159
V-2	Representativity of the REV applied to the concept of porosity. <i>From</i> [Lake and Srinivasan, 2004] <i>adapted from</i> [Bear, 1972].	164
V-3	Periodic boundary conditions	165
V-4	Example of REV	172
V-5	Convenience in the choice of the unit cell. <i>Modified from</i> [Anthoine, 1995]	172
V6	Examples of rectangular unit cells. <i>Modified from</i> [Anthoine, 1995]	172
V–7	Microstructure with REV borders through the matrix.	172
V-8	Two-dimensional 4-node element	180
V-9	One-dimensional element.	182

V-10	Mass balance on node <i>j</i>
V–11	Example of a channel network
V-12	Definition of a contact zone of width <i>l</i> around an interface
V-13	Summary of the numerical FE^2 computation
V-14	Macroscale mesh and REV geometry
V–15	Macroscale mechanical boundary conditions
V-16	Reference case parameters: water pressure drawdown profile for different times 191
V–17	Reference case parameters: evolution of the critical characteristic length with the load-
	ing rate
V–18	Reference case parameters: production curves
V-19	Reference case parameters: cumulative gas production
V-20	Reference case parameters: intrinsic permeability profiles at different times 194
V-21	Reference case parameters: Influence of the boundary conditions on the gas production. 195
V-22	Reference case parameters: intrinsic permeability evolution at $x = 6 \ 6cm. \dots \dots \dots \dots 195$
V-23	Reference case with REV rotation: production curve
V-24	Reference case with REV rotation: cumulative gas production
V–25	Influence of the cleat aperture on the gas production
V-26	Influence of the cleat aperture on the cumulative production
V–27	Influence of the cleat stiffness on the gas production
V–28	Influence of the cleat stiffness on the cumulative production
V–29	Cleat density geometries
V-30	REV extension
V-31	Influence of the cleat density on the cumulative production
V-32	Influence of the tortuosity on the gas production
V-33	Influence of the hydro-mechanical couplings on the cumulative production 201
V-34	Influence of the shrinkage coefficient on the subsidence
V-35	Influence of the hydro-mechanical couplings on the cumulative production 202
V-36	Influence of the shrinkage coefficient on the permeability at $x = 6.6$ cm
V–37	Influence of the Langmuir's parameters on the gas production
V-38	Influence of the sorption time on the gas production
V-39	Influence of the parameters of the retention curve on the production
V-40	Saturation degree with time at $x = 6.6 cm$ from the well for different retention curves 205
V-41	Retention curves
V-42	Matching exercise with the Horseshoe Canyon data
V-43	Schematic horizontal well intercepting a coal seam. From [Espinoza et al., 2015] 209
VI–1	Direct modelling approach
VI–2	Macroscale modelling approach

VI–3	Multiscale modelling approach.			•				•		•	 •	•	•			2	15

List of Tables

II–1	Coal categories based on brightness. From [Medhurst and Brown, 1998] 27
II–2	Summary of test results for 300mm diameter coal samples. From c
II–3	Langmuir's parameters fitting methane sorption data published by [Coppens, 1967] 33
II–4	Proximate analysis in dry basis (d)
II–5	Proximate analysis in dry ash free basis (daf)
II–6	Specimens cored in the same coal block for the experimental campaign (<i>h</i> is the height of the specimen and its diameter)
II–7	Sorption test results - Measurements 1
II–8	Sorption test results - Measurements 2
II–9	Langmuir's parameters obtained from curve fitting of the experimental sorption data 53
II-10	Example of data set used to estimate permeability through equation II–10: Specimen B5s2 with confinement 5MPa and air injection pressure 3 46MPa
III–1	Dimensionless shape factor values (w^2) from different authors
III–2	Reservoir and well parameters used in the reference case
III–3	Reservoir parameters for Horseshoe Canyon coals [Gerami et al., 2007]
III–4	Reservoir parameters used to calibrate the model for the Horseshoe Canyon case 109
IV–1	Model parameters used for the comparison between the numerical and analytical solutions.143
IV–2	Geometry and fractures parameters used for the comparison between the numerical and the analytical solutions
IV–3	Mechanical parameters used to fit the $B5s2$ triaxial tests
IV–4	Initial apertures and normal stiffnesses for different confinements
V-1	Parameters defining the reference case. * Aperture and stiffness given for a null stress 190
V-2	Initial apertures and normal stiffnesses
V–3	Adsorbed gas volumes
V–4	Reservoir parameters [Gerami et al., 2007]
V-5	Reservoir parameters used to calibrate the FE^2 model for the Horseshoe Canyon case. * Given for a null stress

Dubito, ergo sum. Cogito, ergo sum.

René Descartes